
–Independent Work Report Spring,2014–

SRON: A Coordinated Overlay Network via Software-Defined

Networking

Abstract
In this paper, we consider the design and performance of a Software-Defined Resilient Overlay

Network (SRON). While many overlay networks are deployed on end hosts where they are then

configured in a distributed, autonomous fashion at the “edge” of the Internet, our overlay network

is run on backbone switches that support the OpenFlow protocol, and whose routing tables are

coordinated by a centralized controller. Running an overlay on network switches allows our overlay

nodes to route packets with much higher bandwidth than overlay nodes that run on end hosts,

since the hardware in backbone switches is tailored to routing a large number of packets quickly.

Furthermore, while data forwarded over end host overlay nodes must pass through many hops from

the Internet backbone to peripheral end hosts, routing through switch allows data to stay within

the backbone, cutting out several slow hops at the periphery of the network. The fact that SRON is

coordinated by a central OpenFlow controller also allows us to use novel probing techniques that

would be impossible in a distributed overlay; for example, SRON is able to compare the performance

of unidirectional paths between overlay nodes, whereas in all overlay designs of which the author is

aware, only round trip path performance is measured. This centralized controller also means that

SRON is able to avoid generating transient routing loops, since when the controller pushes routing

updates to switches, it has full knowledge of the routing rules on all switches in the network. As

SRON is designed to implemented on SDN switches distributed throughout the Internet, we imagine

ISPs may use SRON to make more intelligent routing decisions across AS boundaries. Although the

results of our investigation did not yield promising performance results for SRON, it did shed light

on some of the unusual concerns overlay designers might face in design Software-Defined Overlays.

1. Introduction

The Internet was designed to be, above all else, scalable. This decision has allowed it to accom-

modate billions of users across the world, and central to this ability is the fact that the Internet is a

memory-less, datagram-switching network. Every router through which a packet passes determines

only the next hop for that packet. As a consequence, however, this lack of central coordination

may lead to sub-optimal routing decisions, and leaves end hosts without control of the routing of

their data. Central to this limitation is the design of the Border Gateway Protocol (BGP), which

determines routing between Autonomous Systems (AS’s). BGP allows Autonomous Systems (AS’s)

to advertise or hide available routes to one another so as to conform with complex peering contracts

between Internet Service Providers. AS’s route via BGP independently of one another, using private

route preferences assigned by network administrators in a way that may be financially optimal for

the AS but slower for the customers routing data through them. Andersen, Balakrishnan, Kaashoek,

and Morris note that “This cost arises because BGP hides many topological details in the interest

of scalability and policy enforcement, has little information about traffic conditions, and damps

routing updates when potential problems arise to prevent large-scale oscillations”[4].

An overlay network, however, can often make better routing decisions than those of BGP. In an

overlay network, a set of network nodes (which may consist of, for example, end hosts running

an application-level overlay program) chooses to route data on top of the existing Internet by

imagining each node in the overlay connected by “virtual links”. These virtual links may consist

of hops over several physical links, with routing between nodes determined natively by Internet

routers. The overlay allows for faster routing than the Internet when the direct path between two

nodes in the overlay is slower than a two-virtual-link hop path through nodes in the overlay (i.e.

when routing through an intermediary overlay node is faster than routing between the two nodes

directly). Andersen et al. at MIT leveraged this fact when they created RON[4], a “Resilient Overlay

Network”. RON consisted of software running on several end hosts distributed throughout the

Internet, working together to decide how packets should be routed through the nodes and links in

2

this overlay. As a result, nodes in RON were able to communicate despite outages must faster than

hosts routing through the Internet alone.

While a significant body of work addresses the design of such resilient overlays, none known to

this author to date considers an overlay network implemented in a Software-Defined Network (SDN).

An SDN overlay presents several advantages over a distributed, end host overlay. For example, the

existence of a centralized SDN controller in an overlay network means routing decisions can be

made by an entity with a holistic view of the nodes in the overlay, and thus more intelligently than

routing decisions made by distributed end hosts. Furthermore, overlays implemented on switches

within the Internet backbone are able to route packets much more quickly and in higher quantity

than end hosts at the periphery of the Internet.

SRON is such a Software-Defined Overlay. We envision it being used by Internet Service

Providers who wish to route more efficiently between their routers and switches that may be

scattered widely across the Internet and connected to each other through various other ISP’s.

2. Motivations

2.1. SRON: A Software-Defined Approach

Current overlay networks typically have been deployed as application-level programs that run

on end hosts. In these overlays, the network nodes are generally bootstrapped into the overlay

and participate in routing via a distributed routing protocol (i.e. link state routing)[4]. This

implementation makes such an overlay network easy to deploy. That being said, distributed routing

protocols have several disadvantages over non-distributed ones. For example, transient routing

loops may occur in networks running distributed protocols in the time between when a link goes

down and when every node has been informed of the network topology change; this occurs because

nodes update their routing tables in response to topology changes in a non-coordinated fashion.

Furthermore, routing decisions made at each node can only consider topology at a local scale. In

this model, there is nothing to prevent–and indeed it is likely to happen–that two nodes, upon finding

a non-congested link, both decide to forward data on that link, and quickly their knowledge that the

3

link was non-congested becomes scale.

SRON, however, is an overlay designed to be deployed by a Software-Defined Network. We

imagine SRON being deployed to ISP’s who may have SDN-compatible switches and routers

scattered throughout the world, some of which may need to route to one another through intermediate

switches owned by another ISP. Thus an ISP would deploy SRON on its SDN nodes in order to

make more intelligent routing decisions across Autonomous System boundaries, since this is where

the suboptimal routing decisions of BGP come into play. ISP’s may also be able to use SRON to

lease virtual network slices to clients with application-specific routing needs.

2.2. Centralized Control

As is characteristic of SDN, SRON assumes a separation of the control and data planes; a centralized

controller (which may still be distributed across the Internet) communicates with all nodes in the

SRON overlay and updates the routing tables of these switches/routers based on the results of

probing paths between them. Since routing is decided by a single entity, every routing change at a

switch is made with full knowledge of the routing rules at every other node in the network (i.e. we

no longer get transient loops as described above).

2.3. Deployment on the Internet Backbone

A second advantage SRON has over typical overlays is that routes packets over Internet switches

rather than through end hosts. When a packet leaves the Internet backbone to an end host, it must

pass through many more hops than if the packet were to be routed through switches directly (see

Figure 1). The path between two end hosts in separate networks includes as a subpath the path

between the two backbone switches that connect the end hosts to the Internet; hence SRON may save

many routing hops at the periphery of the network. Furthermore, switches simply route data much

faster than end hosts since their hardware is designed to do so, and indeed in some cases routing is

implemented entirely or largely in hardware. Thus we believe SRON should be significantly faster

than an end host overlay solution.

4

Hierarchal Structure of the Internet

Figure 1: Here, the triangles represent backbone Internet switches, the circles represent peripheral
routers (for example, routers/switches for a University), and the squares represent end hosts. By
this hierarchal design, there are many fewer hops between two nearby switches than two nearby
hosts.

3. Past Work

3.1. Wide-Scale Internet Performance

BGP is the path selection algorithm used by backbone Internet routers to make decisions about

routing between Autonomous Systems. Interior gateway protocols or IGP’s, on the other hand,

are routing algorithms used by individual AS’s to decide paths within the AS. IGP’s like the

frequently-used OSPF[6]–a shortest-path link state routing protocol–determine paths by examining

link performance and least number of hops. While AS’s may be motivated to route packets to

customers most efficiently when communication is within their domain, business concerns play a

significant role in determining BGP’s “policy” routing decisions; that is, BGP allows AS’s to hide

routes from other AS’s if, for example, the two AS’s do not have an explicit agreement to share

infrastructure. Furthermore, an AS may choose to pass a client’s data to another AS so that it has

more capacity on its infrastructure, even if such a path is sub-optimal. Varadhan, Govindan, and

Estrin proved that BGP policies may not even lead to routing convergence–that is, AS’s may choose

5

to route in such a way that leads to persistent oscillations[17]. Labovitz et al.[11] conducted a two

year study of Internet routing convergence and found router may take tens of minutes to converge

after a fault due to BGP’s routing table oscillations.

3.2. Overlay Networks

Overlay networks have been deployed to support several applications that the Internet alone cannot;

for example, Content Distribution Networks (CDN’s) are overlays that dynamically cache content

across the Internet and deliver it to end users to avoid congestion. Today, CDN’s make up the bulk

of overlay traffic[10].IP multicast–the method of sending a single packet to multiple receivers in a

single transmission–has also been cited as a promising application of overlays. IP multicast makes

applications with multiple receivers more efficient, but is difficult to deploy and today is mostly

implemented within a single domain rather than spanning multiple domains[10]. MBone[12] was

an early overlay that attempted to connect multicast domains by using IP tunneling to transport

data across domain boundaries. Unfortunately, MBone experienced unreliability, heavy loss, and

low throughput[10]. Narada[5] was proposed as an application-layer alternative to IP multicast, in

which overlay nodes created their own routing mesh atop the Internet and serviced multicast in this

way.Another important application of overlay networks is end-to-end performance and resiliency;

The Detour[16] overlay used 45 distributed servers to probe paths between them using the traceroute

program; they were curious to know whether or not data could be routed from points A to B more

efficiently by routing data through one of their overlay nodes C (i.e. could they choose faster

routing paths than the Internet natively). For roughly half of the paths they measured, they found an

alternative route which was faster. RON[4] was an overlay network that, inspired by the findings of

Detour, used frequent probing in combination with link state routing to find low-latency or high-

bandwidth paths between overlay nodes. RON was implemented as on end hosts, and these overlay

nodes were arranged in a fully connected mesh. The fact that RON was fully connected–each of

RON’s n nodes had (n−1) neighbors–and used frequent probing meant that it could not (and was

not intended to) scale beyond about fifty nodes. However, a 12 node RON overlay was still able to

6

overcome almost all routing outages in under twenty seconds. Later modifications to the basic RON

design allowed for overlay networks that could find paths with similar performance to RON nodes

with much less probing. Akamai’s Sureroute overlay was similarly based on findings by Detour,

and selected a best path by holding a race between them, as is implemented in SRON[10]. Another

interesting modification to RON was work by Gummadi et al.[8]; in this mesh, routing is done as

follows: when a node at A wants to send data to B, it randomly chooses k nodes in the overlay and

routes through them; it then uses the intermediary with the first response to route all subsequent

packets, and if at any time this path becomes unresponsive, it chooses a second random k nodes and

tries again. They found that k = 4 gives near maximum benefits.

3.3. Software-Defined Networking

SRON is implemented on a Software-Defined Network–that is, a network on which routers and

switches are programmable, and whose routing rules can be updated dynamically from an SDN

controller. In SDN, the control plane, which makes decisions about how traffic should be handled,

is separated from the data plane, which itself forwards the traffic[7]. The control plane is embodied

by an SDN controller which communicates with network switches and routers in the data plane via

an API. In SRON, we use a popular API known as OpenFlow[13], a protocol supported by most

major switch vendors. OpenFlow is an API useful for programming several compliant devices, from

switches to routers to middleboxes, as it allows devices to forward data based on matching header

fields such as source and destination MAC and IP Addresses, TCP ports, VLAN ID, in port, and

more. One of the largest SDN deployments has been B4[9], a worldwide private LAN deployed by

Google on OpenFlow-compliant, off-the-shelf switches. SDN’s are also commonly used to manage

network in data centers.

7

SRON Deployment

Figure 2: Here, the triangles denote routers and switches in SRON, which we can program via an
OpenFlow controller. SRON switches may be distributed throughout the Internet and connect to
each other via other switches that are not within the same ISP’s domain; these “foreign” switches
that are not controlled by the SRON controller are displayed as circles; SRON nodes are connected
in a clique topology via virtual links that may be comprised of multiple hops over physical links,
as denoted by the dashed line in this figure. The connections between the SRON controller and
switches may be direct, physical links or virtual links.

4. Design of SRON

4.1. Probing Scheme

In SRON, our goal is to measure the latency on the virtual links between nodes and make reactionary

routing decisions. Here we say “virtual” because these links may consist of a sequence of hops

across switches and routers in the Internet. At first, the problem of measuring link latency might

seem straightforward–send a packet between two switches in the network and measure the time it

takes to get between them. Unfortunately, this problem is not so simply solved; for one, it is almost

impossible for two nodes in the Internet to measure one-way trip time, since clocks on these nodes

are not necessarily synchronized (and so packets can’t be timestamped). While we can measure

8

path round trip time (RTT), there may be a large disparity the latency on either half of the path

(indeed, asymmetric paths is a common consequence of policy routing via BGP). Thus if we were

to use RTT as an indication of the performance of a link, we may find that we ignore a fast link

when RTT is high but only one direction of the connection is slow, or prefer a slow link when RTT

is low due to one direction of the connection being fast.

An alternative approach we might consider in a Software-Defined Network is to have the network

controller measure the time it takes for a packet to travel from one switch to another. It might do

this by instructing SwitchA to send a packet or “probe” to SwitchB, and having SwitchB pass the

packet back up to the controller. This probe packet may be marked with a distinguished IP address,

PROBEIP, to allow switches to treat it as a probe rather than normal network traffic. Since the

controller is connected to either probe, it can measure the time it takes for a packet to get from

the controller to switch A to switch B and back up to the controller. This avoids the problem

of measuring round-trip time from A to B, but is only a valid measurement if the path between

controller and switches is short compared to the time it takes for a packet to travel from A to B.

Since the controller-switch connection is likely to run over the Internet, though, we do not believe

this would be a valid measure of the latency between A and B because the time it takes for a packet

to get from the controller to either of these switches may well rival that of the path time between

switches.

Our measurement of link performance in SRON does not attempt to calculate the time taken

along virtual links in the network, but evaluates routes only by their relative performance to other

routes. For example, a path p from SwitchA to SwitchB is “better” than path p′ from SwitchA to

SwitchB if packets sent from A along p reach B faster than those sent from A along p′. In SRON,

we do this by sending probes along all single and double hop paths from A to B. SRON runs atop

a clique topology, where every SRON node is connected to every other SRON node via a virtual

link. To determine the best path from SwitchA to SwitchB, we have the controller inject probe

packets–packets with designed source IP addresses PROBEIP–to SwitchA. These packets are also

given a special destination IP address that denotes that this probe packet originated from SwitchA.

9

Switch Rules for Handling Probes

Figure 3: If a switch receives a probe with the source IP address PROBEIP, it sends the probe to be
logged at the controller; furthermore, if this switch is the first hop in the probe’s path–determined
by the destination IP of the probe–then the switch forwards it on all ports. Otherwise, if this switch
is the second hop, it drops the probe.

SwitchA is instructed by the controller to forward these probe packets to all other switches in the

networks. When a second switch, SwitchC, receives such a packet, it recognizes it as a probe by

checking that the source IP is PROBEIP, and sends the packet up to the controller. This probe gives

the controller information about the performance of the direct path between SwitchA and SwitchC.

We would also like to know about the performance of paths originating at SwitchA that use SwitchC

as an intermediate hop en route to a third switch. Thus, if SwitchC finds that it received this probe

directly from SwitchA rather than an intermediary node–it does this by comparing the destination IP

address of the probe to the port on which it received this probe (hence determining if the probing

switch directly sent the packet)–it floods the probe on all ports that are not connected to SwitchA.

Thus eventually SwitchB will receive a probe originating at SwitchA but passing through SwitchC

(since the network is a clique), and will send this packet up to the controller. Thus the controller has

knowledge about all single and two-hop paths from SwitchA to SwitchB, and knows their ordering

by comparing the order in which it received probes amongst all paths.

Evaluating routes in this way is convenient because by having the controller inject only n(n−1)

packets into the network, where n is the number of nodes, we are able to learn the relative speed of

all single and double hop paths in the overlay. We also have the benefit that, when SwitchA sends a

10

probe to SwitchB and SwitchB forwards this packet over all ports, we explore all paths of the form

SwitchA−> SwitchB−> Switchi for i 6= A,B while only sending a single packet over the the link

from SwitchA−> SwitchB. This reduces the traffic and time it would take to probe all double hop

paths individually.

4.2. Migrating Routes

How does the controller decide when to update flow rules between two switches in the network?

On one hand, we would certainly like to update connections between switches to faster paths if

possible, and would like to do so quickly or at least fast enough to provide a significant benefit

over Internet routing alone. On the other hand, pushing routing updates too quickly may lead to

route oscillation, in which data cannot pass through the network because the routing rules change

so quickly that no meaningful path between endpoints exists. Furthermore, Internet protocols such

as TCP assume that routing changes are relatively infrequent during a connection (this is a crucial

component of its congestion control mechanism), and so frequent routing changes may render this

technique ineffective. Thus we need to set a threshold for when we decide to migrate routes, and

should also keep a history of the performance of different routes so that our updating mechanism is

robust against short term fluctuations in route performance.

We do this as follows: For each pair of switches, we keep a history of the performance of probes

that have taken different paths between those two switches. For example, for SwitchA and SwitchB,

we calculate a metric for each path between them– the direct route between SwitchA and SwitchB as

well as the route from A to B through C, A to B through D, and so on. Here is how we calculate the

metric of a path p with sequence number n: a probe is sent along every path from A to B and each

probe arrives at the controller in some order. Suppose the probe sent along path p is the i’th probe

to arrive at the controller amongst all probes sent between A and B with sequence number n. Then

the metric metric(p,n) is calculated as an exponentially weighted moving average of the order the

probe p arrived amongst all probes between SwitchA and SwitchB:

metric(p,n) = (1−α)metric(p,n−1)+αi

11

Here, the lower value of i the better, since this means the probe arrived at SwitchB relatively quickly.

We choose α = 0.1 since this is the value used by RON to calculate latency[4], and similar to the

TCP value used to calculate round trip time. Suppose the current route used to route data between A

and B is route p. We update this route to p′ when metric(p′,n)≤ βmetric(p,n), where we choose

β = 0.7. By this metric, we migrate from p to p′ when p′ is 30% “faster” than p.

4.3. Delayed Probes

When a switch sends probes to “race” through the network from probing switch to destinations, it is

possible that some probe will be so delayed in the network that it will only reach its destination

after the next round of probing has begun. In this case, it may be that the delayed probe appears to

“win the race” if it arrives at a destination just after a new set of probes has been sent out. In order

to avoid this ambiguity, we have each probing switch mark probe packets with a monotonically

increasing 16-bit counter that is stored in the packet “protocol” field. When the controller receives a

probe from the network with an old sequence number, it logs that route with a metric indicating the

probe was the last to arrive on the source to destination path. The first packet that the controller

receives with a sequence number which is higher than the highest previously seen sequence number

is logged with the best possible route metric, and the counter on the controller is updated to store

that value.

4.4. Learning IPs

Because SRON routes at the IP level, it must have a way of dynamically associating IP addresses

with switches. We achieve this in a way similar to how switches learn MAC-to-port mappings.

When a switch receives a packet with an unrecognized source IP address, it sends the packet to

the controller. If, for example, the incoming packet enters the network on SwitchA and has IP

10.0.0.1, the controller logs this association. It then examines all rules it has for routing between

other switches in the network and SwitchA (as determined by probing as described above). The

controller then updates all switches in the network to use this best path to route all packets with the

destination IP address 10.0.0.1. If, on the other hand, a switch receives a packet with an unknown

12

Switch Rules for IP Learning

Figure 4: When a switch receives a packet with an unknown source IP, it sends it to the controller
so that the controller can log the association between IP address and source switch, and update
forwarding rules on switches appropriately. If the destination IP address of a packet is known, it is
routed according to best path rules determined by probing. Otherwise, the packet is flooded on all
ports in the minimum spanning tree.

destination IP, it sends the packet to an underlying mac learning module which forwards the packet

to all ports along the network minimum spanning tree.

5. Implementation

5.1. Pyretic

We decided to build SRON in Pyretic[15], a Python platform for programming SDNs. Most major

switch vendors support the OpenFlow API for programming switches, but writing OpenFlow

messages directly is tedious, akin to programming in assembly. Pyretic sits above an OpenFlow

controller platform (in our case, POX[1]), and allows programmers to write SDN programs in a

high-level, modular way. For example, consider the following excerpt from SRON that updates the

network routing policy:

We use the if_(predicate, policy1, policy2) to indicate that all switches receiving a

packet with source ip PROBEIP should route that packet using probingPolicy, which includes

both forwarding that probe over all ports or dropping it (depending on whether the switch receiving

this packet is the first or second hop on its path), as well as sending the packet up to the con-

13

def updatePolicy(self):

print "Updating policy..."

probingPolicy explains how probes should be routed. self.query explains how the controller should log

receieved probes

probingPolicy = self.metricsPolicy + self.query

If a reRoutingPolicy has been created based on probe metrics, use it. Otherwise revert to a mac learner.

if self.reRoutingPolicy:

self.policy = if_(match(srcip= PROBEIP), probingPolicy, self.reRoutingPolicy)

else:
self.policy = if_(match(srcip= PROBEIP), probingPolicy, self.macLearn)

troller to be logged. If the packet is not a probe packet, then it should either be routed via the

reRoutingPolicy or, if no such policy exists (for example, when the network is first brought up),

should be routed via a simple mac learning module. Note that rules in Pyretic are not written for in-

dividual switches. Rather, rules for routing packets throughout the entire network are updated when

the variable self.Policy (where here the parent object is of type DynamicPolicy) is updated.

Instructing only a particular switch to perform an action can be specified by creating a rule of the

form: match(switch=someSwitch) » somePolicy. Indeed Pyretic makes SDN programming

concise.

6. Evaluation

6.1. Experimental Setup

To test the performance of SRON, we used a network simulation running on Mininet[2]. Mininet is

a network emulator that can simulate switches, end hosts, and routers on a Linux kernel. We created

a network of switches connected to end hosts, with the switches arranged in a fully-connected mesh.

In order to simulate the fact that these links are virtual rather than physical links–that is, that they

consist of many sometimes unreliable hops through the Internet rather than direct links–we had

pairs of end hosts across these links generate variable amounts of traffic across them. To generate

this traffic, we used Harpoon, an open-source flow-level traffic generator that simulates network

traffic. For each pair of nodes, we set up a Harpoon client and server on either end of the nodes,

that continuously exchanged files of varying sizes. We tagged the IP addresses of these hosts to

be in IP range that SRON would not reroute, so that this traffic would represent the routing of the

underlying Internet. In theory, SRON should find the pair of paths between switches whose links

14

carry the least Harpoon traffic. In order to measure the bandwidth of these links, we set up a pair of

iperf servers and clients on the same switches as the Harpoon clients and servers.

6.2. Results

Unfortunately, we did not find consistent results when testing SRON in this way. For one, we found

that SRON took a significantly longer time (on the order of seconds) than a simple Mac Learner

module to route packets through a non-congested network. Although we are not probing at an

ambitious interval (every 5 seconds), we believe this may be caused by the fact that SRON can only

push routing rules to switches when it learns of the existence of an IP address; in other words, if

SRON knows the best route between SwitchA and SwitchB, it pushes these rules to all switches as

soon as it learns of the existence of an IP at either SwitchA or SwitchB. As a result, the controller

floods the network with routing updates at once.

Furthermore, we found under any significant amount of Harpoon traffic, SRON was unable to

find shorter two-hop paths between hosts and could perform no better than the Mac Learner module.

We believe this may be due to the difficulty of pushing routing updates to switches when they are

experiencing heavy traffic. Unlike an end host overlay, where the underlying links between nodes

may be experiencing failures but the overlay nodes themselves still have the processing power to

make routing updates (i.e. the nodes in an end host overlay are not overwhelmed), in our overlay, the

time at which it is most advantageous for a switch to push a routing table change is precisely when

that switch is most overwhelmed with traffic. We believe this may explain the poor performance of

SRON under heavy traffic.

6.3. Future Work

Our finding that our design of SRON did not perform well under heavy network loads was admittedly

disheartening, but inspires us that SDN’s may have their own unique and interesting requirements

for supporting overlay networks!

That being said, it is difficult for any network simulation to capture all of the subtleties of real

Internet traffic, and indeed our Mininet simulation of the Internet could not have given us fully

15

accurate representation of how SRON might perform if deployed across the globe . In the future,

we would like to test SRON’s performance when deployed on a PlanetLab[3] slice. PlanetLab is a

network of computers consisting of over 1090 nodes at 507 sites worldwide, which is designed for

testing experimental network and distributed systems research projects. With a virtual machine or

“slice” of the PlanetLab network, we could test SRON across AS boundaries and with real network

traffic, so that the difficult-to-predict decisions of BGP’s policy-based routing could be compared

with SRON.

As for making SRON ready for deployment, the current software design is closely tied to the

original design of RON, which has since been improved upon in work by Nakao et al. [14],

Gummadi et al.[8], and more. As mentioned in Section 3, this research has discovered techniques to

reduce the amount of probing between nodes as well as ways to more intelligently use knowledge

about the real network topology to design the overlay network topology.

7. Conclusion

We consider our work on SRON to have been an investigation into the deployment of overlays on

SDN’s. Much to our surprise, we discovered that SRON performed poorly. While we would like to

further investigate and confirm that it is indeed the design of SRON that makes it unsuccessful, we

are interested in any case in seeing SDN overlays be studied more closely in the future.

8. Acknowledgments

This work would have been impossible without the constant guidance and feedback of Jennifer

Rexford.

16

References
[1] [Online]. Available: http://www.noxrepo.org/pox/about-pox/
[2] [Online]. Available: http://mininet.org/
[3] (2012, 09) Planetlab. [Online]. Available: http://www.planet-lab.org/
[4] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient overlay networks,” SIGOPS Oper. Syst.

Rev., vol. 35, no. 5, pp. 131–145, Oct. 2001. [Online]. Available: http://doi.acm.org/10.1145/502059.502048
[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,” SIGCOMM

Comput. Commun. Rev., vol. 32, no. 4, pp. 205–217, Aug. 2002. [Online]. Available: http:
//doi.acm.org/10.1145/964725.633045

[6] R. Coltun, “Ospf for ipv6,” 7 2008.
[7] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history of programmable

networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2602204.2602219

[8] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wetherall, “Improving the reliability of
internet paths with one-hop source routing,” in Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX Association, 2004,
pp. 13–13. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251254.1251267

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed software defined
wan,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2534169.2486019

[10] J. Kurian and K. Sarac, “A survey on the design, applications, and enhancements of application-layer
overlay networks,” ACM Comput. Surv., vol. 43, no. 1, pp. 5:1–5:34, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1824795.1824800

[11] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet routing convergence,” SIGCOMM
Comput. Commun. Rev., vol. 30, no. 4, pp. 175–187, Aug. 2000. [Online]. Available: http:
//doi.acm.org/10.1145/347057.347428

[12] M. R. Macedonia and D. P. Brutzman, “Mbone provides audio and video across the internet,” Computer, vol. 27,
no. 4, pp. 30–36, Apr. 1994. [Online]. Available: http://dx.doi.org/10.1109/2.274996

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69–74, Mar. 2008. [Online]. Available: http://doi.acm.org/10.1145/1355734.1355746

[14] A. Nakao, L. Peterson, and A. Bavier, “Scalable routing overlay networks,” SIGOPS Oper. Syst. Rev., vol. 40,
no. 1, pp. 49–61, Jan. 2006. [Online]. Available: http://doi.acm.org/10.1145/1113361.1113372

[15] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular sdn programming with pyretic.”
[16] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat,

G. Voelker, and J. Zahorjan, “Detour: Informed internet routing and transport,” IEEE Micro, vol. 19, no. 1, pp.
50–59, Jan. 1999. [Online]. Available: http://dx.doi.org/10.1109/40.748796

[17] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations in inter-domain routing,” Computer
Network, vol. 32, pp. 1–16, 2000.

17

http://www.noxrepo.org/pox/about-pox/
http://mininet.org/
http://www.planet-lab.org/
http://doi.acm.org/10.1145/502059.502048
http://doi.acm.org/10.1145/964725.633045
http://doi.acm.org/10.1145/964725.633045
http://doi.acm.org/10.1145/2602204.2602219
http://dl.acm.org/citation.cfm?id=1251254.1251267
http://doi.acm.org/10.1145/2534169.2486019
http://doi.acm.org/10.1145/1824795.1824800
http://doi.acm.org/10.1145/347057.347428
http://doi.acm.org/10.1145/347057.347428
http://dx.doi.org/10.1109/2.274996
http://doi.acm.org/10.1145/1355734.1355746
http://doi.acm.org/10.1145/1113361.1113372
http://dx.doi.org/10.1109/40.748796

	Introduction
	Motivations
	SRON: A Software-Defined Approach
	Centralized Control
	Deployment on the Internet Backbone

	Past Work
	Wide-Scale Internet Performance
	Overlay Networks
	Software-Defined Networking

	Design of SRON
	Probing Scheme
	Migrating Routes
	Delayed Probes
	Learning IPs

	Implementation
	Pyretic

	Evaluation
	Experimental Setup
	Results
	Future Work

	Conclusion
	Acknowledgments

